Quantum Chemistry / Science

Research Update – May 2016

Hey all, I’d like to give a quick research update on things I’ve been working on in my professional life. I’ve got two papers published this year. Their abstracts and citations are below.

Third-order elastic constants of diamond determined from experimental data

The pressure derivatives of the second-order elastic constants (SOECs) of diamond were determined by analyzing previous sound velocity measurements under hydrostatic stress [McSkimin and Andreatch, J. Appl. Phys., vol. 43, 1972, pp. 2944]. Our analysis corrects an error in the previously reported results. Using the corrected pressure derivatives, together with published data for the nonlinear elastic response of shock-compressed diamond [Lang and Gupta, Phys. Rev. Lett., vol. 106, 2011, pp. 125502], a complete and corrected set of third-order elastic constants (TOECs) is presented that differs significantly from TOECs published previously.

Nonlinear elastic response of strong solids: First-principles calculations of the third-order elastic constants of diamond

Accurate theoretical calculations of the nonlinear elastic response of strong solids (e.g., diamond) constitute a fundamental and important scientific need for understanding the response of such materials and for exploring the potential synthesis and design of novel solids. However, without corresponding experimental data, it is difficult to select between predictions from different theoretical methods. Recently the complete set of third-order elastic constants (TOECs) for diamond was determined experimentally, and the validity of various theoretical approaches to calculate the same may now be assessed. We report on the use of density functional theory (DFT) methods to calculate the six third-order elastic constants of diamond. Two different approaches based on homogeneous deformations were used: (1) an energy-strain fitting approach using a prescribed set of deformations, and (2) a longitudinal stress-strain fitting approach using uniaxial compressive strains along the [100], [110], and [111] directions, together with calculated pressure derivatives of the second-order elastic constants. The latter approach provides a direct comparison to the experimental results. The TOECs calculated using the energy-strain approach differ significantly from the measured TOECs. In contrast, calculations using the longitudinal stress-uniaxial strain approach show good agreement with the measured TOECs and match the experimental values significantly better than the TOECs reported in previous theoretical studies. Our results on diamond have demonstrated that, with proper analysis procedures, first-principles calculations can indeed be used to accurately calculate the TOECs of strong solids.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s